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ABSTRACT

Fully developed laminar heat transfer of non-Newtonian fluids between fixed parallel plates has
been studied both thermally and hydrodynamically, accounting for the effect of the moving
fluid's viscous dissipation. Both plates are kept at distinct constant heat fluxes as the thermal
boundary condition. Analytical solutions to the energy equation and subsequent Nusselt number
were found using the Brinkman number and power-law index. The results demonstrate that the
power-law index of the moving fluid has an impact on heat transmission. Pseudo-plastic and
dilatant fluids exhibit differing heat transfer characteristics when viscous dissipation is present. It
is important to take into account the major impacts of viscous dissipation on heat transmission
between parallel plates under specific circumstances.

Keywords: Nusselt number, Power-law fluid flow, Brinkman number, Viscous dissipation,

Constant heat flux.

Nomenclature

1 6A A coefficients defined in Equations. (18), (19), and (26)-(29)
CA cross-sectional area of channel (m²)

1q
Br modified Brinkman number defined in Eq. (7)
1 4C C coefficients defined in Equations. (12)-(15)
pc specific heat at constant pressure (J/kg K)
h convective heat transfer coefficient (W/m²K)
k thermal conductivity (W/m K) width of plate (m)
L power-law index
Nu Nusselt number, defined in Eq. (24)
P pressure (Pa)



1q upper wall heat flux (W/m2)
2q lower wall heat flux (W/m²)
T temperature (K)
0T wall temperature when both walls are kept at the same constant heat flux (K)
1T upper wall temperature (K)
2T lower wall temperature (K) AT
T general temperature difference (K)
u velocity (m/s)
U dimensionless velocity
w half-channel height (m)
W channel height (=2w) (m)
x coordinate in the axial direction (m)
y coordinate in the vertical direction (m)
Y dimensionless vertical coordinate
Greek symbols
 thermal diffusivity (m²/s)
 parameter defined in Eq. (7)
 parameter defined in Eq. (9)
 dimensionless temperature
m mean dimensionless temperature

 consistency factor (pas")
 density (kg/m³)
 shear-stress (Pa)
Subscripts
c center-line
e fluids entering
m mean

1. Introduction

Heat transfer through viscous dissipation effects has been widely studied [1-5], and this effect

commonly occurs in many applications such as material processing and high-velocity flows.

However, the influence of viscous dissipation in non-Newtonian power law flow of liquids is

relatively unknown. Considering various thermal boundary conditions, the simultaneous

occurrence of steady laminar flow of a viscous non-Newtonian fluid flowing between parallel



plates was investigated numerically [6]. When a fluid has a high viscosity, the flow is generally

considered to be dynamically fully developed. This occurs in polymer processing where highly

elastic fluids flow under non-isothermal conditions. The problem of heat intrusion in pipe and

duct flow was modeled and solved semi-analytically by considering either a specified wall

temperature or a specified wall shock flow as the thermal boundary condition [7] .

An analytical solution for viscoelastic fluids was obtained when one plate was exposed to a

constant heat flow and the other plate was insulated but moved at a constant velocity, parallel

plates [8]. To give meaning to viscous dissipation, a numerical study is performed on Poiseuille-

Couette flow in a non-Newtonian fluid when one wall is exposed to a constant heat flow and the

other wall is insulated [9]. Another work [10] addresses heat transfer due to the effects of viscous

dissipation in the flow of non-Newtonian fluids through parallel plates and circular tubes with

thermal boundary conditions of uniform wall temperature. In terms of the second law of

thermodynamics, the effect of viscous dissipation in single-phase non-Newtonian fluids on

entropy generation in circular microchannels was studied [11]. Considering a non-Newtonian

fluid flowing in a channel of heated parallel plates and considering the effects of viscous

dissipation, the second law was analyzed and the temperature and entropy generation was

reported [12]. The effects of viscous dissipation and convective heat transfer in non-Newtonian

thin liquid films on unstable stretch films have been discussed [13].

The analytical results for the case of both plates kept at different constant heat fluxes have not

been documented in the literature, despite the fact that several investigations on the flow of

power-law fluids with viscous dissipation in parallel plates have been conducted. As a result, the

motivation behind the current analytical study is to carefully examine the modifications that the



inclusion of the influence of viscous dissipation causes to the convection heat transfer

characteristics for power-law fluids.

Fig. 1. Notation to the problem

2. Statement of the Problem and Mathematical Formulation

Considering a steady laminar flow of a non-Newtonian fluid with constant properties between

fixed infinitely long parallel plates distanced W or 2w apart, to be fully developed both

thermally and hydro-dynamically. The thermal boundary conditions, the case where the upper

plate at constant heat flux 1q while the lower plate at different constant heat flux 2q , as displayed

in Fig. 1, is considered. The connection between shear-stress describes the rheological behavior

of a power-law fluid between stationary parallel plates with constant fluid characteristics.
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where r is the shear-stress,  is the consistency factor and du
dy is the velocity gradient

perpendicular to the flow direction. The n is the power-law index, where the fluid is shear

thinning or pseudo-plastic for 0 1n  , Newtonian for 1n  and shear thickening or dilatant for

1n  .



When the velocity boundary conditions are 0u  when y w and y w  , the maximum

velocity, cu , occurs midway  0y  between the two parallel plates. Following this, the well-

known velocity distribution is given by
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The energy equation, including the effect of viscous dissipation, is given by
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where the second term on the right-hand side is the viscous-dissipative term. According to the

assumption of a thermally fully developed flow with uniformly heated boundary walls, the

longitudinal conduction term is ignored in the energy equation [14]. Therefore, the temperature

gradient along the axial direction is independent of the transverse direction and is given by

1 2dT dTT
x dx dx


 


(4)

where 1T and 2T are the upper and lower wall temperatures, respectively.

By taking
p

k
C  and substituting Eqs. (2) and (4) into Eq. (3), it becomes

 

 

 

 

1 112
11

2 1 1

11
n nnn n

nc
cn n

n np

u dTT y n yu
y dx c nw w


 

 


 

           
 

(5)



By introducing the non-dimensional quantities
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 and 1
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and by letting  . which is simply a dimensionless constant, and modified Brinkman number

1q
Br , respectively, be
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Eq. (5) can be written as
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where
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The thermal boundary conditions are

1
Tk q
y





at y w , or 1

Y




at 1

2
Y  , 1T T at y w , 0  at 1

2
Y  (10)

The solution of Eq. (8) under the above thermal boundary conditions can be obtained as
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To evaluate  in the above equation, a third boundary condition is required:
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Y   , (16)

By substituting Eq. (16) into Eq. (11),  can be expressed as
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with the coefficients 1A , and 2A , in terms of n , defined as
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In fully developed flow, it is usual to utilize the mean fluid- temperature, mT . rather than the

center-line temperature, when defining the Nusselt number. This mean or bulk temperature is

given by
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(20)

with cA the cross-sectional area of the channel and the denominator on the right-hand side of Eq.

(20) can be written as
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Using Eqs. (2) and (11), the numerator of Eq. (20) can be found. The dimensionless mean

temperature is therefore given by
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At this point, the convective heat transfer coefficient can be evaluated by

 1 1 mq h T T  (23)



Defining the Nusselt number to be
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the Nusselt number can be evaluated and its explicit expression be given as
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where
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3. Results and Discussion

Since the general results are too complex, various individual cases are presented below to

illustrate the heat transfer characteristics. The values of n selected for discussion are 1
4 ,

1
2 , 1,

and 2 .

3.1. Cases of Unequal Heat Fluxes

3.1.1. Newtonian Fluids

The heat transfer between the fluid and the upper wall is described by the Nusselt number in Eq.

(24), which also takes into account the effect of viscous dissipation. For a Newtonian fluid

 1n  , we have the established result,
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agreeing with Ref. [5].

Fig. 2. Graph of Nu versus
1q

Br for 1
4n 



3.1.2. Shear Thinning Fluids

For the pseudo-plastic fluids  1n  , when 1
4n  ,
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and when 1
2n  ,
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As expected, from Eq. (31), at a given ratio of 2
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, the graph (Fig. 2) Nu at 1
4n  versus

1q
Br , will form a rectangular hyperbola on both sides of an asymptote of
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Five sets of curves are shown in Fig. 2, for the heat flux ratios of 0,1,5,10 and 28
11 .

The ratio 0 corresponds to the case of insulated lower plate and the case of an equal constant

heat flux on both plates is represented by the ratio of unity. The ratio 28
11 is of interest because

the asymptote lies on the vertical axis.



3.1.3. Shear Thickening Fluids

For dilatant fluids  1n  , when 2n  , the real part of Nu is
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The
1q

Nu Br , curves for dilatant fluids feature differently from those for Newtonian and

pseudo-plastic fluids. Instead of manifesting as rectangular hyperbola with asymptotic values of

Nu and
1q

Br , the
1q

Nu Br , curves for dilatant fluids appear as non-asymptotic forms, showing

turning points in the variation of
1q

Br , against Nu .

Table 1: Minimum and maximum points when Nu versus
1q

Br , for various ratios of 2

1

q
q

  
 

at 2n  .

2

1

q
q Minimum points Maximum points

1q
Br Nu

1q
Br Nu

0 -0.3598 -1.4346 -0.1604 4.2900
1 -0.2331 -2.4522 -0.1165 7.3339
2 -0.1065 -8.4395 -0.0726 25.240

2.25 -0.0748 -21.655 -0.0616 64.994
2.35 -0.0621 -57.933 -0.0572 172.72
2.45 -0.0528 -266.55 -0.0495 86.235
2.451 -0.0528 -250.25 -0.0494 83.500
2.455 -0.0526 -235.29 -0.0489 74.886
2.46 -0.0524 -215.12 -0.0482 67.759
2.48 -0.0515 -145.91 -0.0457 49.115
3 -0.0287 -17.500 0.0202 5.8529
4 0.0152 -6.4994 0.1468 2.1731
5 0.0591 -3.9904 0.2735 1.3344
10 0.2785 -1.3619 0.9067 0.4554



Table 1 displays the values of the turning points in the variation of
1q

Br , against Nusselt number

for 2n  for the specified heat flux ratios. Moreover, when 2

1

q
q , increases from 0 to 2.45 the

Nusselt number decreases as
1q

Br , increases. When 2

1

q
q  2.45, the minimum occurs at (-

0.0528,-266.55) and the maximum occurs at (-0.0495, 86.235). When 2

1

q
q increases from 2.451

to 10, there is an increase in Nusselt number as
1q

Br , increases. When 2

1

q
q  2.451, the non-

asymptotic curve has the minimum at (-0.0528,-250.25) and the maximum at (-0.0494, 83.5).

Therefore when 2

1

q
q increases from 2.45 to 2.451, the Nusselt number changes from decreasing

Fig. 3. Graph of Nu versus
1q

Br for 2n 



to increasing. It is evident that the heat transfer properties of a dilatant fluid with a power-law

index depend significantly on the magnitude of the heat flux ratio and the Brinkman number.

Based on Eq. (34), four sets of curves are shown in Fig. 3, for the heat flux ratios of 0, 1, 5, and

10, for 2n  . It is observed again that the curves are not asymptotic and they have the maximum

and minimum values for Nu . When 2

1

q
q  0, 1, 5, 10, the minimum value that Nu takes is

-1.4346, -2.4522, -3.9904, -1.3619, respectively, whereas the maximum value that Nu takes is

4.29, 7.3339, 1.3344, 0.2554 respectively.

It is noted that for pseudo-plastic fluids, when 1
4n  and for Newtonian fluids when 1n  the

Nusselt number profiles against
1q

Br , are asymptotic, and for dilatant fluids, when 2n  the

Nusselt number profiles against
1q

Br , are not asymptotic, but they have turning points as

explained in Table 1.

Fig. 4. Graph of  Y versus Y for the case of insulated lower plate at 1
4n  .



3.2. Special Case of Insulated Lower Plate

For the case of insulated lower plate, 2 0q  , and for Newtonian fluid, we obtain the established

result
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agreeing with Ref. [5].

For the pseudo-plastic fluids, from Fig. 4, for 1
4n  , it is observed that when

1q
Br  -3, -2, -1,

the temperature distribution assumes positive values and it becomes 0 at Y = 0.5. When
1q

Br  0,

1, 2 and 3, the temperature distribution assumes negative values and it becomes 0 at Y = 0.5.

Fig. 5. Graph of  Y vs Y for the case of insulated lower plate at 2n  .

For the dilatant fluids, from Fig. 5, for 2n  , the real part of theta is plotted. It is observed that

when
1q

Br  -3, -2, -1, the temperature distribution assumes positive values and it becomes 0 at Y



= 0.5. When
1q

Br  0, 1, 2 and 3, the temperature distribution assumes negative values and it

becomes 0 at Y = 0.5. For 1
4n  ,
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From Fig. 2, it is observed that when 2 0q  at 1
4n  , Nu versus

1q
Br , is asymptotic and the

asymptote appears at
1q

Br  -0.55984. For 1
2n  ,
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For dilatants, at 2n  , the real part of Nu is
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verifying the findings in Table 1 and Fig. 3.

3.3. Equal Heat Fluxes Case

The particular interest here is the case when both the upper and lower plates are of equal heat

flux, i.e., 1 2q q . An implicit expression was given in Bird et al., but our explicit form, in Eq.

(25) with 2

1

q
q is ready to be used.



3.3.1. Newtonian Fluids

For the Newtonian fluid, the Nusselt number is reduced to
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where
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with u the mean velocity of the fluid. The expression of Nu in Eq. (39) corresponds to the

classical problem of Poiseuille viscous-dissipative Newtonian flow in parallel plate channel. For

verification of the present model, we observe that the
1q

Nu Br correlations in Eq. (39) are

identical to those in [4] and [1], respectively, for fully developed flow of Newtonian fluid with

isoflux boundary condition. For the case of no viscous dissipation,
1

0qBr  , the Nusselt number

becomes 70
17Nu  .

3.3.2. Shear Thinning Fluids

For the pseudo-plastic fluids, when 1
4n  ,
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(41)

and when
1q

Br = 0, Nu = 273/68.When 1
2n  ,
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and when
1q

Br = 0, Nu =45/13.

3.3.3. Shear Thickening Fluids

For dilatants, when 2n  , the real part of Nu is,

 1
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and when
1q

Br = 0, Nu =82656/26233.



4. Conclusions

For fully developed power-law fluid flow between stationary parallel plates, an exact expression

for the Nusselt number has been found. The investigation of heat transmission has revealed that

the impact of viscous dissipation is crucial. The dimensionless temperature distribution and

Nusselt number are obtained by Equations (11 and 25), respectively, when both plates are

maintained at distinct constant heat fluxes, for all 0n  and they are in terms of
1q

Br . When the

lower plate insulated and the upper plate is at constant heat flux, the Nusselt number is derived

by substituting 2 0q  in Eq. (25), and selected results are Eqs. (35)-(38). For the case of equal

constant heat fluxes at both the plates, the Nusselt number is obtained by substituting 1 2q q in

Eq. (25), and selected results are Eqs. (39), (41)-(43). For 1
4n  , the Nusselt number

distribution against Brq, is asymptotic, whereas, for 2n  , Nusselt number distribution against

1q
Br , is not asymptotic and maximum and minimum values occur at various points depending

upon the ratio 2

1

q
q
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